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SUMMARY

We consider the Galerkin finite element method for the incompressible Navier—Stokes equations in two
dimensions. The domain is discretized into a set of regular triangular elements and the finite-dimensional
spaces employed consist of piecewise continuous linear interpolants enriched with the residual-free bubble
functions. To find the bubble part of the solution, a two-level finite element method with a stabilizing subgrid
of a single node is described, and its application to the Navier—Stokes equation is displayed. Numerical
approximations employing the proposed algorithm are presented for three benchmark problems. The results
show that the proper choice of the subgrid node is crucial in obtaining stable and accurate numerical
approximations consistent with the physical configuration of the problem at a cheap computational cost.
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1. INTRODUCTION

Applications of the Galerkin finite element method to incompressible Navier—Stokes equations
in velocity—pressure form were carried out in the early 1970s. It was soon recognized that the
use of equal-order interpolations for both velocity and pressure variables, which is the most
desirable choice from the implementation point of view, generates numerical approximations that
is inconsistent with the physical configuration of the problem [1, 2]. The difficulty is two-fold. In
the first layer, the finite element formulation of the problem is of mixed form and the appropriate
pair of the function spaces satisfying the BabuSka-Brezzi condition must be employed [3-5].
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However, the problem may still exhibit numerical instabilities at high Reynolds numbers even
when appropriate pair of approximation spaces is employed. A considerable amount of scientific
work has been devoted to developing numerical algorithms that are able to cope with both of these
problems simultaneously.

One of the most popular of such numerical methods is referred to as the streamline upwind
Petrov—Galerkin (SUPG) method [6]. The finite element methods of the SUPG type reduces the
oscillations in the standard Galerkin method of piecewise linears and achieves stability by adding
mesh-dependent perturbation terms to the formulation. These terms enhance the coercivity of the
formulation by acting like artificial diffusion in the direction of streamlines and enables the usage
of the velocity—pressure pairs that are known to produce approximations not consistent with the
exact solution of the problem [7]. However, the amount of perturbation or the value of the stability
parameters that should be chosen by the user is not known a priori and needs to be adjusted by
means of error analysis and/or experiments.

Later it has been shown that the SUPG-type stabilized methods for the equations modeling
the flow problems can be derived by adding the bubble functions to the velocity space in the
standard Galerkin finite element formulation and then eliminating the bubbles by using the static
condensation approach [8—14]. In this approach the optimal choice of the stabilization parameter
in the SUPG method was simply translated into the problem of the optimal choice of the bubble
space. Therefore, the bubble functions should be chosen appropriately to cope with the difficulties
arising in the numerical simulation of the equations. In that context, the residual-free bubble (RFB)
functions whose description is based on a local boundary value problem related to the strong form
of the equation in each element were introduced in [9]. The numerical methods employing the RFB
functions were investigated in different element configurations mostly for advection-dominated
flows. It can be verified that the RFB method enhances the stability of the discrete problem and
satisfies a priori error estimates similar to the ones for the SUPG method [15-20].

Since the RFB method is based on the classical solution of a local problem of advection—diffusion
type, finding its exact solution is usually difficult as much as the original system of differential
equations. Therefore, an accurate numerical algorithm to obtain the approximate solution of the
bubble problem inside each element has to be designed. This can be done by the two-level finite
element method (TLFEM). The TLFEM was first introduced by Franca and Macedo in [21]
for the Helmholtz equation. It was later extended to the advection—diffusion equation in Franca
et al. [16] and to the incompressible Navier—Stokes equations in [22]. TLFEM consists of two
parts: On the one at the global mesh level, the problem will be in the Galerkin framework, whereas
the bubble part of the solution is still unknown. Before solving the problem on the global mesh,
we have to compute the bubble functions, which is accomplished in the second part of the method.
To do this, we set another layer of mesh (subgrid) inside each element on which we calculate
the approximate solution of bubble functions by using a nonstandard finite element method. Then
these approximations are used instead of the exact bubble functions in the global mesh level of the
formulation. However, the implementation of the TLFEM can be expensive from the computational
point of view, and a cheap efficient algorithm that generates qualitatively the same bubble functions
as the TLFEM thus is sought.

Recently, some numerical algorithms were proposed in the context of advection—diffusion equa-
tion to provide a cheap approximate solution to the bubble problem with the use of a subgrid
consisting of very few nodes [23,24]. The method can be viewed as a variant of the TLFEM
where the subgrid consisted of a single internal node plus three vertices induced by the global
mesh, per element. The internal node is taken over one of the medians of the triangle and the
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precise location of the subgrid node is determined so that a residual value becomes minimum
in the sense of Lj. With the use of a suitably chosen internal subgrid node, it can be proven
that the resulting numerical method, called stabilizing subgrid method (SSM), has qualitatively
similar stability features of the classical stabilized methods and satisfies the same a priori error
estimates as the SUPG or the RFB methods. However, these results hold only if the advection
field is piecewise constant inside each element.

In this work, we apply the SSM to the approximation of the incompressible Navier—Stokes
equations on a triangular discretization of the domain. We employ the space of continuous piecewise
linears plus bubbles for the velocity variable and the continuous piecewise linears for the pressure
variable in a framework of the mixed finite element method. The nonlinearity emanating from
the nature of the equation is treated through an iteration. We assume that the advection field is
uniform inside each element by taking the average value of the velocity variable at the vertices of
the triangle. The resulting numerical method approximates well and proves good stability features.
It is further computationally cheap and able to adapt itself between different flow regimes.

We organize the paper as follows: In Section 2, we describe the RFB formulation of the Navier—
Stokes equations and the part of the TLFEM that consists of the contribution of the RFB functions
to the global problem. The second part of TLFEM that consists of approximating to the exact bubble
functions using the SSM is presented in Section 3. Implementation issues related to the subgrid
will also be discussed in this section. We illustrate the potential of the method in Section 4 by
presenting some numerical experiments obtained in different problem configurations. Conclusions
are drawn in Section 5.

2. THE RFB METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

2.1. Steady-state Navier-Stokes Equations

The steady-state incompressible Navier—Stokes equations in an open-bounded domain Q C R? with
the boundary 0Q are given by

(Va)u—ecAu+Vp=f inQ
V.u=0 inQ (1)
u=0 on 0Q

where u is the unknown velocity field, p is the unknown scalar pressure function, f is a given
source function and ¢ is the viscosity parameter. The weak formulation of problem (1) is obtained
by employing the pair of function spaces V = (HO1 (@)% and P=C%(Q)N L%(Q), and it reads: Find
ueV, pe€ P such that

B(u;u, p;v,q)=F(v,q) forallveV, geP 2)
where the forms are given by
Bw;u, p;v,q)=((Vu)w,v)+¢(Vu,Vv)—(V-v, p)+(V-u,q)
Fv,q)=(v)
A mixed finite element approximation of problem (2) is determined by the choice of finite-

dimensional subspaces V, C V, P; C P defined on a family of discretizations 7}, of the domain Q.
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We assume that 7}, is made of triangles {K'} and that 7}, is regular as defined in [25]. Denoting the
space of piecewise linear functions on a typical element K by Pj(K), we choose the following
finite-dimensional subspaces on T, before we specify a finite element method:

Vi=Vi® U (B(K) ={ve(H}(Q)*|vIke (P (K)®B(K))* K €T)}
KeTy

Vi={ve (H} (Q)?|v|ke PI(K)* K €Ty}
Pi={peC®@NLIQ)|plxePi(K),K €Tp}

where B(K) is the space of RFB functions, which we define later. The standard Galerkin finite
element method is based on employing the same function space for both test and trial spaces and
it is equivalent to finding the pair {uy =uj+up, p1} from Vj x P; such that

By wy, pryvi,gq)=®,vy) Y{vp,qi}eVyx P (3)
where
B(wpsup, p1; v, 1) = (Vup)wy, vi) +e(Vuay, Vvy)

— Vv, p)+Veup, q1)

Problem (3) is nonlinear due to the presence of the advection term, which will be resolved by
employing an iteration process: Let us decompose the approximate solutions uy, and p; as

it =l iy, 4)
Pt =pi+ py (5)

where uZH and pTH are the approximations at the current iteration step, u; and p are the approx-

imations at the previous iteration step, and @, and p; are the corrections to the approximations at
the previous iteration step. We linearize problem (3) by replacing the advection term ((Vuy)uy, vp)
with ((VuZH yu?, vy). Now if we choose the space of bubble functions such that a typical bubble
function u, in B(K) is zero outside a fixed element K € 7} and satisfy the momentum equation
inside K; that is

V(u’l’Jrl —FuZJrl)u’f—sA(u'l’Jrl —i—uZ"rl)—l-Vp;’Jrl =f inkK

(6)

uZH =0 ondK

then this special choice of bubble functions in (6), the so-called RFB, enables us to employ the
static condensation procedure, from which we obtain the Galerkin formulation using piecewise
linears for problem (1) modified by the RFB: Find {uzJrl , p’f“} €V}, x Py such that

Bt pt v g ==& v1) V{vi,q1}eVix Py (7)
where
Byt pit v, g = (VuThul v +e(Vup T vvy)
—(Vovi, DY+ (Vg gn)
Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:551-572

DOI: 10.1002/fid



TLFEM WITH A STABILIZING SUBGRID FOR NAVIER-STOKES EQUATIONS 555

A rearrangement of terms in (7) reveals the explicit contribution of the RFB functions to the
standard Galerkin formulation of the problem. The problem now reads: Find {uZ+1, p?“} eV x Py
such that

B u ™, pt v, g+ (Vu Tl v eVt v+ (Ve gn=E v (8)

holds for all {v{, g} € V| x Py, where the first term comes from the standard Galerkin formulation
of the problem with piecewise linears only, which is known to be unstable. These additional terms
make the numerical method recover the physical structure of the problem and, thus, are responsible
for stability of the numerical method. Further, it can be proved that the elimination of the RFB
functions in these additional terms leaves behind a formulation similar to a stabilized finite element
method of the SUPG type [12]: Find {u:11+1 , p’f“} € Vy x P; such that

Bl ult pithivign+ Y 1 / [(Vul Thu} +Vpi —fI[(VvDu] = Vgil=E v (9)
KeTy K

Vivi,q1}eVix Py (10)

where the stabilization parameter tx is explicitly given by

1
txk=— [ bxdK (11)
K |K|/K K

and b is the unique bubble function defined by the following boundary value problem in K:

Lbg =—eAbg —I—u'f-VbK =1 inK

(12
bk =0 ondK )

We note that Equation (9) and the SUPG formulation of the Navier—Stokes equations have
the identical structure except for the value of the stabilization parameter tx. The value of the
stabilization parameter tx is given in terms of the bubble function b for which, finding its exact
solution using (12) may not be an easy task in an arbitrary triangular domain. Therefore a cheap
efficient approximation by bx that generates qualitatively the same behavior with the exact bubble
function bk is required, and its algorithm is presented in Section 3.

2.2. Unsteady Navier-Stokes equations

The unsteady Navier—Stokes equations can be given by

Z—?+(Vu)u—sAu+Vp=f in Qx (0,T)
V.au=0 inQx(0,7T)
u=g ondQx(0,7T) (13)
u0,)=uy inQ
/pdx:O in Qx(0,T)
Q
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where u is the velocity, ug is the initial velocity, p is the pressure, f represents the body force,
(0, T) is a given time interval, Q C R? is a bounded domain with the boundary dQ and g is a given
function defined on the boundary.

We approximate the time derivative terms by using the finite difference method as

wH —uf = Ao 4+ (1 — o)’ (14)

where w=0Ju/0¢, o is the relaxation parameter with « € [0, 1] and Ar=t,,1 —t,, the length of the
time interval in a typical slab [z, f;41] x Q. For special values of «, the method turns into one of
the following well-known time-stepping procedures:

e o=1: Implicit type.
o o= %: Crank—Nicolson type.
e o=0: Explicit type.

The spatial discretization of the weak form of (13) leads to the following equation: Find {uy,, p1}
in Vi, x P; such that

BQupsuy, pr1;ve,q) ==& vy) Y{vi,q1}e Vi x P (15)

where

B(wpsup, p1;vi,q1) = (g, vi) +(Vup)wy, vi) +e(Vuay, Vvy)
— Vv, p)+(V-uy, q1)

If we assume that the bubble part depends on space variables only, then the RFB method applied
to the time-dependent problem leaves behind a stabilized finite element formulation of the SUPG
type. With a temporal discretization of type (14), it reads: Find {ulerl . D) H} € V] x P; such that

@t v+ At (Ve ey vy +e(Vai T Vv — (Vv pith = (6 vi)]
—I—Atoc|: » rK/ ([ﬁ§+1+(vui+1)ui+1+vpi+l_ﬂ.[(vvl)uél‘+1_Vq1])i|
KeTy K
— (], v) +Ar (1 =) [(Vupuy, v) +e(Vuj, Vvy) = (V-vy, p)) — (£, v1)]

+At(1—0<)[ > TK/K([l'l‘i+(Vu‘i)U‘i+Vp‘f—ﬂ'[(Vvl)u‘i—Vm])}

KeTy

—a(V-ut g —(1=a)(V-u},g)=0 Y{vi,q1}eVix P (16)

where the values uj and p] are known from the previous time step. The time derivatives in mesh-
dependent terms are approximated by backward and forward difference operators, accordingly.
The nonlinearity in the equation can be eliminated by a similar argument described in the previous
section.
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3. TWO-LEVEL ALGORITHM WITH A STABILIZING SUBGRID

To compute the contribution of the RFB functions to the problem, we need to solve Equation (12)
in each element, separately. Since Equation (12) can be viewed as a linear advection—diffusion
equation, a cheap, yet efficient numerical algorithm can be employed to compute the approximate
solution of the bubble problem as in [23, 24, 26]: Specify a subgrid that consists of three vertices
of the triangle plus a single additional node in the interior of each element and approximate the
bubble function over the specified subgrid by choosing the location of the additional node such
that it gives the best approximation in L; norm. These approximations will be used in problem (9)
instead of the exact solutions of the bubble functions.

To describe the algorithm of the SSM, take a fixed element K and consider a subgrid that
contains just one additional node N = Nk in the interior of each triangular element. We drop the
subscript K as the argument is similar for other elements. The node N is joined to the three
vertices denoted by V; splitting the triangle K into three subtriangles. We will choose the point
N along one of the three medians of K. Let us denote the pseudo bubble basis function on K by
by where it is defined as

bn(N)=1, by(V))=0, =123 7)

Thus, the function by attached to the point N has support contained in K. We further denote the
edge of K opposite to V; by e;, the length of e; by |e;|, the outward unit normal to e; by n; and
v; =|e;|n;. The choice of the median on which the point N is located will depend on the number
of inflow edges in the triangle, and the precise location of N will be chosen such that the value
of the residual in the sense of L is minimum. That is

J(N):/K|—8Ab;‘\,—|—u'11~Vb*N—1|dK (18)

is minimum, where b}, (x) =a(N)by (x) is the unique solution of
ag (by,bn)=(1,by) Vby (19)
Using the integration by parts, observe that

[ by dK

Ny=_JKONCR
#(N) ¢ [, IVby2dK

(20)

The set of points on the median V1M can be described as a function depending on a single
parameter t: N=(1—1)V;+tM, where O<t<1. In order to choose the position of N, we have
to distinguish among two cases with respect to the number of inflow edges. Define the average
velocity u} by arithmetic mean of the velocity components at the vertices of the triangle; i.e.
u} = (uf (V) +uf (V2) +u(V3))/3. We use 0] to characterize the type of the edges of the triangle:
If u}-n; >0 then e; is an outflow edge, otherwise it is an inflow edge.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:551-572
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V=0
to1] I
U=0 3
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‘>
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Figure 2. The problem statement of the lid-driven cavity flow.

€800 €3200

Figure 3. The problem meshes tested: 800 and 3200 elements.
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SSMre400e800

p, min =-0.0306577, max =0.186223

SSMre400e3200

p, min =-0.0450847, max =0.197299

Figure 4. Pressure elevations for Re =400.

SSMre5200e800

p, min =-0.0031353, max = 0.0308326

GPre5200e800

p, min =-0.0026757, max = 0.0276087

BGre5200e800s5

p, min =-0.003057, max =0.0326571

SSMre5200e3200

p, min =-0.0033574, max = 0.0366256

GPre5200e3200

p, min =-0.0033452, max = 0.0368189

BGre5200e3200s5

p, min =-0.0033879, max =0.0362616

Figure 5. Pressure contours for Re=5200.
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In the first case where the inflow boundary is made up of two edges, let e, and e3 be two inflow
edges (Figure 1). Then for the value for ¢, we take

iy e(ler]?) i e 2|K|(a}, vy)/3
elex —e32 — 2| K|(@], v1)) T 3le |2+ lex —es)? Q1)
t= % otherwise

where ¢ lies in the interval [%, 1). In the other case where the inflow boundary is made up of a
single edge, let e; be the inflow edge (Figure 1). We use again condition (18) to determine the
location of N and the integral J(N) becomes minimum if ¢ is taken as

_ e(lea|*+es|?) e =2|K|(uf,v1)/3
e(er—esl?/2— |KI@,v)/3) 3(lealP+ [es?) —[er—es]? 22)
t= % otherwise

In this case, O<t<%. We refer to [23, 26] for the derivation of the values of 7 in (21) and (22). Two
articles use two different criteria for choosing the subgrid node; however, they reach the similar
results.

SSMre5200e800 GPre5200e800 BGre5200e800s5

p, min =-0.0031353, max = 0.0308326 p, min =-0.0026757, max = 0.0276087 p, min =-0.003057, max = 0.0326571

SSMre5200e3200 GPre5200e3200 BGre5200e3200s5

p, min =-0.0033574, max = 0.0366256

p, min =-0.0033452, max = 0.0368189 p, min =-0.0033879, max =0.0362616

Figure 6. Pressure elevations for Re=5200.
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Figure 7. Adaptation of the subgrid points in SSM as the problem mesh is refined at Re=5200: The
problem meshes are €800 and €3200, respectively.

S85Mre5200e800

Figure 8. Adaptation of the subgrid points in SSM as the problem becomes advection dominated on a
fixed mesh e800: Re=400 and 5200, respectively.
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1| ssMreszo0e3z00

Figure 9. Streamlines for Re =5200.

Table I. Numerical values at some selected points through the geometric center of the cavity.

u Velocity along vertical line x =0.5 v Velocity along horizontal line y=0.5

y Re=400 Re=5200 X Re=400 Re=5200
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0750000 —0.0350700 —0.0648715 0.0750000 0.0530557 0.0506292
0.1250000 —0.0548183 —0.0819039 0.1250000 0.0734340 0.0669750
0.2500000 —0.0977078 —0.0588283 0.2500000 0.0969054 0.0650425
0.3750000 —0.1107317 —0.0293358 0.3750000 0.0939595 0.0359474
0.5000000 —0.0645859 —0.0002669 0.5000000 0.0571612 0.0097147
0.6250000 0.0137531 0.0308169 0.6250000 —0.0158838 —0.0171241
0.7500000 0.0858983 0.0664360 0.7500000 —0.1208616 —0.0467028
0.8500000 0.1736514 0.0834718 0.8500000 —0.1819628 —0.0721858
0.9000000 0.3088252 0.1397576 0.9000000 —0.1584394 —0.1042040
0.9500000 0.5886718 0.5006183 0.9500000 —0.0880898 —0.1083465
0.9750000 0.7852072 0.7521335 0.9750000 —0.0438278 —0.0614507
1.0000000 1.0000000 1.0000000 1.0000000 0.0000000 0.0000000

Once the location of the point N is determined through the relation N=(1—¢)V;+tM with
the value of ¢ given in (21) or (22) depending on the number of inflow edges, a reasonably good
approximation to the stabilization parameter Tx can be obtained: The approximate value of tg is
given by

K| Jk IKle [ IVONI2 93 leil?/IKil

(23)

where K is the area of ith subtriangle. The values of 7k s are then used in the global formulation (9)
in place of 7g. A numerical approximation consistent with the physical configuration of the problem
can now be obtained for the piecewise-linear part of the solution through (9).
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In this section, we present some numerical results with the SSM presented above and compare it
with the methods employing some other variants of stabilizing subgrids. We work on three test
problems: (1) 2D laminar flow inside a lid-driven cavity, (2) 2D flow past a cylinder, (3) an unsteady
flow around a cylinder. We use the tool VIGIE (Visualization Generale Interactive d’Ecoulements)
to visualize the numerical results. The iteration cycle that resolves the nonlinearity of the problem

stops when the maximum norm of the error is less than 107°.

Before we present numerical results we briefly mention our convention in labels. The upper case
letters at the beginning of each label refers to the method we employ at the subgrid level: SSM

u-velocity along vertical line through geometric center of the cavity

v-velocity along horizontal line through geometric center of the cavity
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Figure 10. Velocity profiles for Re=400 and 5200.
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Figure 11. The statement of the flow problem past a cylinder.
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refers to the stabilizing subgrid method, GP refers to the method selecting subgrid point at the
gravity center of each element and BG refers to the TLFEM in which the subgrid is the finest and
generated by repeating the subgrid strategy in GP to subtriangles s times. Numerical experiments
show that the optimum value for s is 5. Hence, we keep the value of s fixed and take s=35
throughout the calculations. What follows the part of the label referring to the method employed
is the Reynolds number tag that we denote it by re. The number of elements on the global mesh
follows e. Thus, for example, the label SSMre26e6800 means that, for the problem of interest, we
test the SSM at Reynolds number 26 over a global mesh with 6800 elements. We remark that all
three methods use the same formulation at the global scale.

el700

6800

27200

Figure 12. The problem meshes tested.
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4.1. Cavity flow

This is a standard benchmark problem. The problem specifications are given in Figure 2. We
impose continuous boundary conditions by means of a linear transition from the level y=0.9 to 1.0
on the upper corners of the boundary, and this behavior remains unchanged with mesh refinement.
The Reynolds number is based on the characteristic velocity U and the characteristic length L and
is given by

UL
Re=—
&

Since the pressure is determined up to a constant through the formulation, we append the condition

fre
Q

to the formulation to fix the constant. For problems having high Reynolds number, the convergence
of the iteration is only attained under a good initial guess. To provide such a guess, we use a
continuation process on the top of the iteration.

SSMre26e1700 SSMre26e6800

p, min =-0.485221, max = 0.650241 p, min =-0.476723, max = 0.639374

SSMre26e27200

p, min =-0.471644, max =0.637113

Figure 13. The cylinder problem: Pressure contours for Re=26.
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[

sSMre2bel ﬂﬁm

Figure 14. Pressure detail behind the cylinder for Re =26.

Figure 15. Mesh detail around the cylinder for Re=26 with e=1700 and 6800.
We present the numerical results for Re =400 and 5200 on a pair of successively refined uniform
meshes (see Figure 3). For Re=400, the flow regime of the real solution is diffusive dominated

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:551-572
DOI: 10.1002/fid



TLFEM WITH A STABILIZING SUBGRID FOR NAVIER-STOKES EQUATIONS 567

55Mre26c1 700 S55Mre26c6800

SSMre26c27200

Figure 17. The unsteady flow around a cylinder problem, mesh tested: 5404 triangular elements.

in most parts of the domain, and the roles of stabilization components are not so significant.
Therefore, all three methods produce similar results and we present the pressure elevations of the
numerical approximations obtained through SSM only in Figure 4. They show the characteristic
features of the real solution that are comparable with the results present in the literature [22, 27].
Figures 5 and 6 show pressure contours and pressure elevations, respectively, at Reynolds number
Re=5200. Assuming that the results obtained through the TLFEM are the most accurate, we may
conclude that SSM predicts the real solution better than GP at both levels of the problem meshes.
This shows that the proper choice of the subgrid node may play a significant role in obtaining more
accurate approximations. As the mesh gets finer, the problem becomes locally diffusive dominated
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iy

=60

=8.0

Figure 18. Pressure contours for unsteady flow around a cylinder problem at t =1, 2, 4, 6 and 8, respectively.

in a larger portion of the domain and the need for stabilization is diminished (Figure 7). The
situation is apparent as the location of the subgrid points suggested by SSM moves to the gravity
center of the element and all three solutions get closer to each other. However, SSM is slightly
better that GP as SSM suggests a more correct location for the subgrid node over a smaller portion
of the domain (Figure 7).

On the other hand, Figures 8 shows the configuration of subgrid points in the mesh e800 for
Re =400 and 5200, respectively. As the Reynolds number increases, the problem becomes advection
dominated and therefore the adaptation of the position of the subgrid point is strongly pronounced.
The stabilization is now effective on a larger portion of the entire domain. Streamlines presented
in Figure 9 for Re=15200 with the SSM are also in agreement with the results in the literature (see
[22, 28,29]). As given in Reference [30], the approximate results of velocity components through
the geometric center of the cavity are presented in Table I and Figure 10, respectively.
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=8.0

Figure 19. Flow vectors for unsteady flow around a cylinder problem at t=1,2,4,6 and 8, respectively.

4.2. Flow past a cylinder

The geometry and the boundary conditions are shown in Figure 11. At upper and lower compu-
tational boundaries and at the inflow section, a uniform free-stream velocity boundary condition
is imposed. The traction-free condition is imposed at the outflow boundary. The steady flow
past a cylinder is studied at Re=26, where the Reynolds number is based on the free-stream
velocity and the cylinder diameter, i.e. Re=(Uxd)/¢e. See [31] for a historical overview of this
problem.

We are interested in the performance of the SSM over a series of successively refined meshes
(Figure 12). Around the cylinder, we employ a uniform distribution of 40,80,160 nodes in angular
direction and a quadratic distribution of 21,41,81 nodes in radial direction, respectively. We present
the pressure contours for Re=26 in Figure 13. Although the method captures the main features
of the exact solution, even at the very coarse level of the global mesh, the increase in the number
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of elements improves the approximation. A detailed plot of pressure contours around the cylinder
in Figure 14 confirms this observation.

We note that the SSM is more effective over coarser meshes. This can be observed in Figure 15,
as SSM adapts the location of the subgrid node over a larger portion of the region. This adaptation
is crucial in obtaining stabilized approximations. We note that the streamlines in Figure 16 are in
good agreement with the experimental results in [32].

4.3. Unsteady flow around a cylinder

The unsteady flow around a cylinder problem [33] is governed by the unsteady Navier—Stokes
equations with Re =100 and f=0. The problem is given with homogeneous initial value u(x, y, 0) =
0 and boundary conditions at inflow (x =0) and outflow (x =2.2) boundaries as

u(0,y,H)=u(2.2,y,1)=0.41"2 sin(nt/8)(6y(0.41—y),0), 0<y<0.41 (24)

No-slip boundary conditions are described at the other boundaries (y=0,0.41 and around the
cylinder). It is seen from the given boundary conditions that the problem has periodic behavior
at T =8. Therefore, the problem is solved in the time domain for ¢ € [0, 8] using Crank—Nicolson
scheme with a time step Ar=0.1. In space dimension, the problem domain is discretized by
5404 triangular linear elements (Figure 17). The efficiency of the applied numerical procedure
is observed from the obtained results in terms of figures. The periodic behavior of the flow is
displayed as pressure contours in Figure 18. Also, Figure 19 shows the unsteady behavior of the
flow in terms of flow vectors. Although the large time step is used in the solution procedure,
characteristic of the flow is captured by SSM.

5. CONCLUSION

We consider an SSM for the approximate solution of the incompressible Navier—Stokes equations
in the framework of the TLFEM. The domain is planar and the discretization is triangular. The
presentation above shows that the TLFEM with the stabilizing subgrid produces stable and accurate
approximations in a variety of problem configurations establishing that it is applicable to nonlinear
problems in 2 dimensions. Numerical experiments further indicate that the proper choice of the
subgrid node may play a significant role in obtaining more accurate approximations, especially
for high Reynolds number.
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